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On the stability of plane shock waves 

By N. C. FREEMAN 
Department of Mathematics, University of Manchester" 

(Rereizied 13 February 1957) 

SUMMARY 
The decay of small perturbations on a plane shock wave 

propagating along a two-dimensional channel into a fluid at rest 
is investigated mathematically. The perturbations arise from 
small departures of the walls from uniform parallel shape or, 
physically, by placing small obstacles on the otherwise plane 
parallel walls. An expression for the pressure on a shock wave 
entering a uniformly, but slowly, diverging channel already 
exists (given by Chester 1953) as a deduction from the Lighthill 
(1949) linearized small disturbance theory of flow behind nearly 
plane shock waves. Using this result, an expression for the 
pressure distribution produced by the obstacles upon the shock 
wave is built up as an integral of Fourier type. From this, the 
shock shape, .$, is deduced and the decay of the perturbations 
obtained from an expansion (valid after the disturbances have 
been reflected many times between the walls) for .$ in descending 
power of the distance, 5 ,  travelled by the shock wave. I t  is shown 
that the stability properties of the shock wave are qualitatively 
similar to those discussed in a previous paper (Freeman 1955); 
the perturbations dying out in an oscillatory manner like 5-3/2. 
As before, a Mach number of maximum stability (1.15) exists, 
the disturbances to the shock wave decaying most rapidly at this 
Mach number. A modified, but more complicated, expansion for 
the perturbations, for use when the shock wave Mach number is 
large, is given in $4. 

In particular, the results are derived for the case of symmetrical 
' roof top ' obstacles. These predictions are compared with data 
obtained from experiments with similar obstacles on the walls 
of a shock tube. 

1. INTRODUCTION 
The ability of plane shock waves, propagating into a stationary fluid, 

to  retain their shape when subjected to small disturbances was considered 
theoretically in a previous paper (Freeman 1955). This property has been 
called ' stability'. It was realized however that the model used to demonstrate 
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this, namely, a perturbation to the shock wave produced by moving a plane 
piston impulsively from rest at constant speed into the stationary fluid, 
would be difficult to reproduce in the laboratory. In  order to overcome 
this disadvantage another model is here studied. In this model, a plane 
shock wave propagating down a uniform channel into a fluid at rest is 
disturbed by small protuberances on the channel wall. This model bears 
a close resemblance to actual experimental conditions when the shock is 
produced, as is usually the case, in a shock tube, and, in fact, such experiments 
have been performed by Mr K. C .  Lapworth in the Manchester University 
shock tube. It will be shown that the shock wave qualitatively exhibits 
similar properties to those described in the preceding paper (Freeman 
1955). 

Chester (1953) has already considered the problem of a shock propagating 
along a two-dimensional channel which begins to diverge slowly, and has 
extended this result to obtain the change in strength of a shock propagating 
along a channel which changes from one uniform cross-section to another. 
The solution given below will be a further development of this work obtained, 
essentially, by considering higher order terms in the expansion given by 
Chester. In its turn, the Chester solution is a development of the problem, 
investigated by Lighthill (1949), of a shock wave propagating along a 
plane wall which suddenly changes in direction by a small angle 6. The 
fluid is assumed inviscid except in a. thin region comprising the shock wave 
across which the variables of the flow change discontinuously in a manner 
determined by the Rankine-Hugoniot relations. The disturbances produced 
at the corner are assumed to be small enough for the equations of the flow 
behind the shock wave to be linearized. The shock wave is disturbed from 
its plane form within a region cut off by a cylindrical wavefront, which 
originating at the corner, expands with the speed of sound behind the 
undisturbed shock wave and is translated bodily with the velocity of the 
fluid behind the undisturbed shock wave (see figure 1). When the corner 
is concave to the flow, this becomes the familiar Mach reflection. Under 
the conditions stated above, the pressure satisfies the wave equation with 
constant sound speed and the solution can be obtained in terms of the 
‘conefield’ variables by the use of the Busemann transformation and 
conformal mapping techniques. Chester has shown that the presence of 
another wall can be accounted for by considering a system of images in the 
wall. The solution is rather complicated, being a sum of Lighthill solutions. 
After the disturbances produced have undergone a sufficiently large number 
of reflections at the walls, however, an asymptotic expansion for the pressure 
on the shock wave can be obtained in descending powers of the time. The 
first term of this expansion is used by Chester in his solution for a change 
in cross-section of the channel. Further higher order terms, which decay 
with time, are neglected. It is these terms that we shall consider here. 
In  the case when the channel is uniform along its length, except over a 
finite range, after which it returns to its original 6ross-section, the decaying 
terms alone remain. 
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We, therefore, consider the propagation of a plane shock wave along 
a uniform two-dimensional channel with walls a fixed distance apart except 
.over a finite length where the channel width varies slowly in some prescribed 
manner. Following Chester, we will concern ourselves with the behaviour 
at large time, that is, after many reflections have taken place at  the channel 
walls. It will also be assumed that sufficient time has elapsed for the shock 
to have travelled a distance large compared with the length of the non-uniform 
section of the channel. 

Figure 1 .  The configuration in the Lighthill problem. 
S, shock; W, wall. (a) Subsonic; (b)  Supersonic. 

The perturbations to the flow arising from each element of the disturbing 
wall are propagated, as pointed out in the previous paper (Freeman 1955), 
at the speed of sound behind the undisturbed shock as cylindrical waves 
convected with the fluid. The velocity of the disturbances along the shock 
wave is the velocity component of these wavefronts along the shock. To 
the linearized approximation, the velocity of the wavefront of the cylindrical 
wave produced by a particular element of wall is a, 2/{ 1 - ([ U - u]/a,)2} 
(= a,sin$, say) along the shock,' where a, is the velocity of sound behind 
the undisturbed shock and U -  u is the velocity of the undisturbed shock 
relative to the fluid behind it. As these waves are cylindrical in character, 
we expect a singularity like d(1- (r /a ,  t )2}  where r is the distance from 
the centre of the disturbance produced by the particular element under 
consideration, and t is the time measured from the instant at which the 
shock strikes it. But, as has been shown previously (Freeman 1955), the 
strength of this wavefront is forced to vanish at the shock by the form of 
the boundary condition there, and the singularity is of higher order. The 
effect of the non-uniformity of the channel wall is then the sum of all these 
cylindrical waves and is obtained as a Fourier transform of the individual 
solutions. At large time, the behaviour of this integral is dominated by the 
singularity at the cylindrical wavefront. Thus, the shock is perturbed on 
passing the non-uniformity by disturbances which travel along it with a 
speed a, sin $. Due to the singularity at the wavefront, the disturbances 
decay in an oscillatory manner like 5-3'2 where 5 is the distance travelled 
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past the obstacle. This rate of decay varies with shock Mach number,. 
decreasing rapidly both for strong and very weak shocks. Between these 
extremes there lies a Mach number of maximum stability where the 
perturbations to the shock wave decay most rapidly with the distance 
travelled by the shock. This has been calculated as M = 1.15 approximately, 
which is very close to the value 1.14 given for the first model (Freeman 1955). 

An interesting phenomenon occurs when we consider the particular 
case of symmetrical ‘roof top’ obstacles placed on the upper and lower 
walls of the channel (see figure 2). Then, together with the above variation 
in Mach number, there is a variation with the length of the ‘ roof top ’ due 
to cancellation or reinforcement in varying degrees of the disturbances 
produced at the corners and vertices. A similar effect occurs in linearized 
aerofoil theory of supersonic flow for the so-called ‘ Busemann Biplane ’. 
When the shock wave strikes the ‘roof tops’, disturbances propagate 
outwards along it and are reflected at  the opposite walls. At the ends of 
the ‘ roof top ’, the corners being concave to the flow, the disturbances will 
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Figure 2. The ‘roof top’ obstacles in position in the channel. 

be compressive ones, whereas at the vertex, the corner being convex to the 
flow, the disturbance will be expansive. The latter disturbance, according 
to linear theory, is opposite in sign and twice the magnitude of either of 
the former. On this account, should the length of the ‘ roof top ’ be such 
that the time taken for the shock to travel between corner and vertex is an 
integral number of times that for the disturbances on the shock to travel 
across the channel, cancellation of these disturbances will occur and the 
decay will be faster than indicated above. In a similar manner, maximum 
disturbance is produced when the time taken for the shock to move from 
corner to corner is an odd integral multiple of that for the disturbances 
to cross the channel. These conditions may be written Ubla, 1 sin+ = 2n 
and Ub/a,lsin# = 2n+ 1, where n is an integer, U is the velocity of the 
shock wave, 21 is the length of the ‘ roof top ’ and 2b the width of the channel. 

In $5, the results obtained by Lapworth (1956) from experiments on 
‘ roof top ’ obstacles situated on the walls of a shock tube are briefly discussed. 
These results indicate that the theory developed in this paper gives a good 
qualitative picture of actual conditions. The oscillatory nature of the 
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perturbations and their rate of decay are in good agreement although t h e  
actual magnitude of the perturbation is somewhat less than predicted. 
This  discrepancy might be expected however since the present theory i s  
only a linear approximation to the true state of affairs. 

I n  conclusion, a comparison of the present model with the one discussed 
previously (Freeman 1955) makes it clear that the behaviour of the shock 
wave is to some extent independent of conditions prevailing in the flow 
field behind. A theory making this assumption has been put forward by 
Whitham (1957) to take into account non-linear effects. 

2. EXTENSION OF CHESTER SOLUTION 

The  theory of Lighthill (1949) has shown that the flow behind a plane 
shock moving along a plane wall which changes in direction by a small 
angle 6 is disturbed within a circle expanding with the velocity of sound 
behind the shock and whose centre moves with the velocity of the fluid 
behind the shock originally being situated at  the corner (see figure 2). 
These velocities are, to this approximation, constant and equal to their 
value behind the undisturbed shock wave. In  the case of supersonic flow 
behind the shock, there is an additional region of disturbance bounded by 
the tangent from the corner to this circle (figure 2(b) ) .  The  shock is 
disturbed from its plane form in the region cut off by this circle. 

The  pressure within the circle is given by 

( P I  - P o )  S P ( S ,  I’b (2.1). 

( 2 . 2 )  

where 
aP aP CID(zl - 1 + y2)  - llsec + 
ay, + %g = (z4 - l)l’Z(z, - 1 + y”(a - i(z, - 1 ) q p  - i(z, - 1)1’2) 

with cos+ = [ ( M 2 + 5 ) / ( 7 M 2 -  1)]1/2. T h e  constants M, ,8, y ,  C and D are 
functions of M defined by Lighthill (1949). M is the Mach number of the 
shock; a,, p,, p, and a,, p , ,  p1 are the sound speed, pressure and density 
in front and behind the shock respectively. The  zl( = x1 + iy,)-plane is 
related to the physical (x,y)-plane with origin at the corner and x-axis in 
the direction of propagation by 

(2.3). 

x-q1t . v 2peie 
+ z =  = X+iY = - and 

where q1 is the velocity of the fluid behind the undisturbed shock wave. 
T h e  disturbed region in the (x,y)-plane is mapped into the upper half plane. 
The  disturbed shock, which is given by x = Ut or X = cos+, becomes 

a1 t a1 t 1 +p2’  

(2.4) 

with 0 < Y < sin$. 



402 N .  C. Freeman 

The point x1 = 1, y1 = 0 is the intersection of the shock and wall and 
x1 = 00, y1 = 0 the intersection with the circular wavefront. From (2.2), 

(2.5) 
C[D(x, - 1 + y2) - l ] (a  + ,8)sec t j  ap - ax, - (xl + 1)1/2(x1 - 1 + y2)(x1 - 1 + @2)(x1 - 1 + E2) 

on the shock. 
Chester (1953) has shown that the problem of a shock moving along a 

channel of width 2b which begins to diverge uniformly at a small angle 26 
can be solved in terms of this solution. The effect of enclosing the shock 
between two walls is to reflect the waves produced at the corners repeatedly 
between the two walls. Since this wave motion is already of order 6 ,  
however, the effect of the divergence of the walls will be a second order 
,effect in S in the reflections, and hence these reflections may be considered 
to take place at plane walls. Suitable images can be placed outside the walls 
to produce the required reflections. The number of these images that 
influence the shock will grow with time. The pressure in the case of a 
channel can therefore be written 

with 
S(P1 -Po)P(x,y, t), 

where x is measured along the channel and y from the centre of the channel, 
the summation being taken over all the images that influence the shock. 
By using Dirichlet's summation formula, Chester writes this, in a form 
more convenient for asymptotic estimation, as 

p = &(X, (b -Y>/.1 t) + + P ( Z  (b +r)/a, t )  + 
(l-X2)1/2 

+ a,t 5 [ 1 ( -  l y p ( x ,  ~ ) e ~ i ( a i t ~ ~ + ~ ) / b  d y +  
2b r b = -  (b-y)la,t 

+ j(l-J2)1/2 

9 (2.7) ( - l )np(X,  y)ef iwul tY-ul /b  d y  
(b+@)/ad  

where p ( X ,  Y )  is given by (2.2). 
If we now consider pressure variations on the shock alone, then 

It will be sufficient to consider the behaviour of this function for large time. 
The behaviour of the first two terms will simply be determined by 

expanding p as a function of Y. The integrals within the sum will however 
be dominated by the singularities of p in the range of integration. It will 
be shown as in the previous paper (Freeman 1955) that the singularity at 
the shock-wavefront intersection is dominant. 
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Near Let us now consider the function p(cos+, Y )  in more detail. 
-the wall, when Y = 0, x1 = 0, (2.5) together with (2.4) states that 

Thus ap/aY = 0 at Y = 0 and also 

At the shock-wavefront intersection Y = sin+, or x1 = co, then, from (2.5), 
ap CD(cc+/3)sec+ 

p = const. + O( Y2).  

~ ( C O S  +, (b  i-y)/al  t )  = const. + O((b i - ~ ) ~ / a ?  t2). (2.9 1 

(2.10) 
x6/2 Zl 1 

Consider now a general term of the sum in (2.8). For n # 0 we have 

using (2.9) and (2.5), where A is a constant. Also, since ap/aY = O(Y)  
as Y -+ 0, it follows that 

where B, is a constant and the integration is now along the shock from the 
wall to the wavefront. It follows also that the above integral is dominated 
by the singularity at the upper limit. The integrand is 

"( 3) $ m a ,  W l b  

dY shock . - CD(a + P)sec + cosec +( 1 - Y cosec +)1/2einna1 tYlb (2.13) 
near Y = sin$, and so the integral may be written 

Y cosec +)ll2ein*l tYlb dY + 0 - . (2 
Using the formula for the asymptotic expansion of a Fourier integral (see, 
for example, Freeman 1955), we obtain 

I n m ,  t sin $ 
( - l )TD(cc  + /3)sec $ I 

4jn/&r J,? - B, + 

where e n =  -1 ( n  > 01, 
= +1 ( n  < O), 

for t large. Substituting in (2.8), we have 

- aitj;"' p(cos+, Y ) d Y + B +  

xexp{ inm, t sin + in (2.15) 
b 
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where 2 denotes that there is no term n = 0 in the summation, and B is- 
a constant. The integral has been calculated by Chester, who denotes it 
by K( U/a,), and hence 

n = l  

Now, let us consider a channel of more general cross-section defined by 
y = b + f ( x ) ,  y = - b - f ( x ) ,  where f ( x )  is non-zero for some range of x and 
f ( x )  is small. In fact, we will consider the case off(x) non-zero only in 
a finite range, that is, the effects of change in shock strength due to changes 
in width of channel, which have already been studied by Chester, will not 
be considered. The solution of the problem in which the channel begins 
to diverge uniformly can now be generalized to this new channel shape by 
considering a change of slope df(r)) at time t = q/U and distance x r). 

Thus the value of P for the new problem will be 

P, = P t -  - y dj’(r)), (2.17). I (  & , )  
the integral being taken over the range in which f is non-zero. For 
sufficiently large distances away from the obstacle in the channel, the 
powers of t - (?I/ U )  become t and thus, 

n = l  

xcos-ddf’(r))+O n.rry 
b 

Now if 5 is the perturbation of the shock wave from its plane form, then the 
perturbation to the pressure is :Muo po(a(/at), to a linear approximation, 
from the shock equation ( y  = 1.4). Hence the perturbation to the shock 
shape may be written 

x $ j(*sin[ nmz lb sin+ (t- $ ) - ~ ] c o s ~ d f . ( r ) ) + O  
n = l  n7/2 b 

This result indicates, as has been shown previously (Freeman 1955), that 
the perturbations to the shock wave decay at a rate proportional to the 
inverse three-halves power of the time, or, alternatively, of the distance 
travelled by the shock wave past the obstacle. The variation of the coefficient 
in (2.19) with Mach number will be discussed in more detail in $ 3 .  
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In passing, it might be observed that the modification to equation (2.19) 
for the case of a channel which increases in width by a small amount 2c is 
.obtained by adding a term 

-to the right-hand side. 

3. THE ' ROOF TOP ' DISTURBANCE 

In order to obtain more detailed knowledge of this phenomenon, we 
will now study a particular form of the function f(x)-the so-called ' roof 
top ' (see figure 2) .  Let 

'Then, using (2.17), we obtain 

'The total disturbance is made up of a sum, therefore, of the individual 
disturbances at the corners and vertex of the ' roof top ', due regard being 
taken of their origin in time. Hence, using (2.19) and (3.2),  

i; 5 .  =p,(--) b 
3/2 x 

a, t sin (J 

where 

and 

m 

?&=l 
~ ( x )  = 2 (sin nx - cos nx) 

If 5 = Ut, the distance travelled by the shock, then 

"a, I sin + 
Uh 

where F(z) '= 2E(z) -  E 

and 
n = (-)":" U a,. 

a, sin + 
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Figure 3. The function F(z). 
-T 



On the stability of plane shock waves 407 

The function E(x)  was computed by making use of the relation 

The function F(x)  is plotted in figure 3 for various values of la, sin $/ Ub. 
F(x) is periodic with period 2n. For la,sin#/Ub = 2n) where n is an 
integer, the function is identically zero. This condition may be written 
I /  U = (2b/a, sin $)n, which states that the time taken for the shock to travel 
between a corner and the vertex of the ‘roof top’ is an integral multiple 
of the time taken for a disturbance to travel along the shock across the 
channel. If this is so, the initial term of our expansion will vanish and 
higher order terms will dominate, the shock perturbations decaying more 
rapidly. The function F is a maximum for values of (a, 1 sin $/ Ub) at which 
( l / U )  = (b/a,  sin $)(2n + 1). These values correspond to configurations 
in which the disturbances produced at the vertex and corners reinforce 
each other. The coefficient Q is shown in figure 4. The similarity between 
this figure and figure 5 of the earlier paper (Freeman 1955) is immediately 
obvious. The minimum at M = 1.15 is very close to the one shown there. 
The perturbations to shock waves of this Mach number decay most rapidly 
with the distance travelled by the shock wave. 

4.  THE VARIATION AT HIGH MACH NUMBER 

The behaviour of the various constants for large Mach number M may 
be summarized as follows: 

cos $ - 2/(+)) sin $ - d(!), - 22/($)M2, P - 2/(3), 
y - 2/(4), c - 35 2/($)M2/.rr, D - 8. (4.1) 

The correct approximation to equation (2.5) for large M and large x1 
is, therefore, 

( 4 4  
aP CD [ 1  +(rs/4lSec$ 
8x1 - -( -i-)x:/2{1+ [(x, - 1)/a211)’ 

since a is no longer small. It will be observed that as a+ co then 
(i3p/8x1) - r 3 I 2  and the form of the singularity that dominates the integral 
(2.13) has changed. When a is large but finite, we must consider a form of 
expansion in which the pole x1 = -a2 lies close to the branch point. The 
method used is due to Clemmow (1950). From (4.2), 

near z = 0, where x = 1 -(Y/sin#) and 0 = CD(a+P)sec$/a2. 
using (2.4), 

Whence, 

@zlP 

sin +(x + a-2) ’ a* N (4.4) aY 
and thus for large M ,  

aP 0 
aY sin$(l- ( Y/sin$))lj2 
- w  
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.as opposed to 2P C i 2 0  

FY sin +{I - (Y/sin + ) ) 1 / 2  

for smaller 111. 
shock perturbations for large M. 
.expression for 

This in turn would give a slower decay, like t-lI2, to the 
For large M ,  therefore, we require an 

in place of the expansion of (2.13) since, as before, the main contribution 
will come from near u" 
,diverging channel is 

= 0. Thus, as in $2, the pressure due to a slightly 

KUt 
p =  -- + B +  b 

'The integral enclosed in the square brackets may ,be written 

b nmal t sin + eiin ( nul t sin + ) ' I 2  I*( $6 ) 'O' ' 
.and 

where * denotes the complex conjugate and 

l(z) = 1 - t / ( m ) e i z  (4.7) 
0 

.As in (2.19), the shock shape is then given, for a channel varying in width, 
by 

where A is given in table 1. And, in a similar manner to 53, the solution 
for a 'roof top' obstacle can be obtained. 

Table 1. 
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5 .  EXPERIMENTAL RESULTS 

The model discussed in the previous section bears a close resemblance 
to actual experimental conditions in a rectangular shock tube when ‘ roof 
top ’ protuberances are placed on two opposite walls. Such experiments 
have been undertaken by Mr K. C. Lapworth (1956) in the shock tube at 
the Mechanics of Fluids Department, Manchester University. The original 
intention was to make a comprehensive study of the results obtained from 
the preceding theory. However, the results obtained so far fall somewhat 
short of this ideal due to the inability to reproduce the theoretical model 
as closely as would be desired. 

In theory, the perturbations to the shock wave are assumed infinitesimally 
small-a consequence of the linearization of the problem. In practice, it is 
necessary to produce disturbances which are large enough to be measured. 
Since the perturbations are decaying all the time, this will always limit the 
distance downstream at which one can observe the Perturbations to the 
shock wave. As the theoretical result is given by an asymptotic expansion 
in inverse powers of the distance, this can seriously limit any comparison 
between theory and experiment by not allowing time for the regime in 
which this expansion is valid to be set up. In fact, however, the main 
features of the asymptotic form of decay would seem to be apparent earlier 
than one might expect theoretically, at least for Mach numbers not too small. 

Also, in the theoretical considerationsviscous effects are neglected entirely 
except in so far as they occur in the idealized form of the shock wave. 
In practice, viscous effects are important especially around the corners of 
the ‘roof tops’, producing separation and the formation of a wake from 
the vertex. As any viscous effects produced at the wedges will take time to 
develop after the shock has passed, it will take time for such disturbances 
to grow large enough to influence the shock. It is thought that it is this 
which puts an even greater restriction on the distance downstream at which 
measurements of the perturbations under theoretical flow conditions can 
be made. For, after a time, the perturbations start to increase due probably 
to the wake formation influencing the shock wave. 

The experiments were made at three shock Mach numbers, 1.60, 1-41 
and 1.16. The shock wave was photographed using Schlieren techniques 
at various distances after passing the ‘ roof top ’ system. As it was difficult 
to decide where the undisturbed position of the shock wave would be and 
hence to measure f directly, a measure of the perturbation which was 
independent of this was used. This will be called ‘ the total perturbation ’ 
and denoted by f,. tr is the sum, without regard to sign, of the maximum 
and minimum values off  along the shock wave at any particular time. The 
Mach numbers 1.41 and 1.60 give disturbances to the shock wave which 
are near the maximum for the ‘roof top’ system considered, and hence, 
for these, it is sufficiently accurate to approximate the function F(x) by a 
sinusoidal function of the appropriate amplitude and period. The total 
perturbation f r  can then be written in the form 

409 

Isin(mx +p)i, 
t G 
22;=(5/26)n 

F.M, 2 E  
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from equation (3.4), where the values of n, G, m and p are functions of 
Mach number and are given in table 2. 

For the Mach number 1.16, it was found difficult to compare the values 
with theory in any way. This may be due to the fact that the asymptotic 
behaviour will take a longer time to establish itself for lower Mach numbers 
and those results will therefore not be discussed further. For the two 
Mach numbers 1.41 and 1.60, Lapworth (1956) has attempted to fit the 
experimental results for a formula of the type (5.1). Estimates of m and p 
are obtained from the zeros of the function &, and then G and n are obtained 
by applying a least squares fit. In order to decide at what point the 
perturbations began to be influenced by the disturbances in the flow 
produced by separation at the roof tops, the data were analysed using 
varying numbers of results dispensing one at a time with the later results 
until a fairly consistent set of values on n and G were obtained. An average 
of these values is given in table 3. 

1.60 3 . 4 4  

Table 2. 

1 

-3.91 0.157 
-3.91 1 0.273 1 

Table 3 .  

A comparison of tables 2 and 3 shows that even with the difficulties 
encountered, the decay of the perturbations is in fair qualitative agreement 
with theoretical predictions. The actual perturbations are two to three 
times smaller than those predicted but this might be expected from a linear 
theory. Non-linear effects would interfere with the reinforcement or 
cancellation of the sets of disturbances from the two roof tops and also 
cause the disturbances to interact among themselves. The compressive 
disturbances would tend to concentrate themselves int.0 shock waves 
whereas the expansive ones would spread out and interact with these waves. 
A non-linear theory, such as that developed by Whitham (1957), would 
be required to describe these effects. The resulting perturbations would 
thus be reduced by a further cancelling of the individual disturbances. 
The poor agreement of the phase difference p may again be due to the 
non-asymptotic nature of the flow, 
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In view of the reason for the breakdown of the theoretical flow conditions 
in practice, it would seem difficult to modify this model in any simple way 
to overcome this defect. To make any more detailed study of the phenomena, 
it would seem that a different shaped obstacle not so prone to separation 
difficulties would have to be used. 
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